
•1

CPE/EE 422/522
Advanced Logic Design

L14
Electrical and Computer Engineering
University of Alabama in Huntsville

14/07/2003 UAH-CPE/EE 422/522 AM 2

Additional Topics in VHDL

• Attributes
• Transport and Inertial Delays

• Operator Overloading
• Multivalued Logic and Signal Resolution

• IEEE 1164 Standard Logic

• Generics
• Generate Statements

• Synthesis of VHDL Code
• Synthesis Examples

• Files and Text IO

14/07/2003 UAH-CPE/EE 422/522 AM 3

Review: Operator Overloading

• Operators +, - operate on integers
• Write procedures for bit vector addition/subtraction

– addvec, subvec
• Operator overloading allows using + operator

to implicitly call an appropriate addition function
• How does it work?

– When compiler encounters a function declaration in
which the function name is an operator enclosed in
double quotes, the compiler treats the function as an
operator overloading (“+”)

– when a “+” operator is encountered, the compiler
automatically checks the types of operands and calls
appropriate functions

14/07/2003 UAH-CPE/EE 422/522 AM 4

Review: Multivalued Logic

• Bit (0, 1)
• Tristate buffers and buses =>

high impedance state ‘Z’

• Unknown state ‘X’
– e. g., a gate is driven by ‘Z’, output is unknown
– a signal is simultaneously driven by ‘0’ and ‘1’

•2

14/07/2003 UAH-CPE/EE 422/522 AM 5

Review: Signal Resolution

• VHDL signals may either be
resolved or unresolved

• Resolved signals have an associated
resolution function

• Bit type is unresolved –
– there is no resolution function
– if you drive a bit signal to two different values

in two concurrent statements,
the compiler will generate an error

14/07/2003 UAH-CPE/EE 422/522 AM 6

Review: Signal Resolution (cont’d)
signal R : X01Z := ‘Z’; ...
R <= transport ‘0’ after 2 ns, ‘Z’ after 6 ns;
R <= transport ‘1’ after 4 ns;
R <= transport ‘1’ after 8 ns, ‘0’ after 10 ns;

14/07/2003 UAH-CPE/EE 422/522 AM 7

Review: Resolution Function for X01Z

Define AND and OR for
4- valued inputs?

14/07/2003 UAH-CPE/EE 422/522 AM 8

IEEE 1164 Standard Logic

• 9-valued logic system
– ‘U’ – Uninitialized
– ‘X’ – Forcing Unknown
– ‘0’ – Forcing 0
– ‘1’ – Forcing 1
– ‘Z’ – High impedance
– ‘W’ – Weak unknown
– ‘L’ – Weak 0
– ‘H’ – Weak 1
– ‘-’ – Don’t care

If forcing and weak signal are
tied together, the forcing signal
dominates.

Useful in modeling the internal
operation of certain types of
ICs.

In this course we use a subset
of the IEEE values: X10Z

•3

14/07/2003 UAH-CPE/EE 422/522 AM 9

Resolution Function for IEEE 9-valued

14/07/2003 UAH-CPE/EE 422/522 AM 10

AND Table for IEEE 9-valued

14/07/2003 UAH-CPE/EE 422/522 AM 11

AND Function for std_logic_vectors

14/07/2003 UAH-CPE/EE 422/522 AM 12

Generics

• Used to specify parameters for a component in
such a way that the parameter values must be
specified when the component is instantiated

• Example: rise/fall time modeling

•4

14/07/2003 UAH-CPE/EE 422/522 AM 13

Rise/Fall Time Modeling Using Generics

14/07/2003 UAH-CPE/EE 422/522 AM 14

Generate Statements

• Provides an easy way of instantiating components
when we have an iterative array of identical
components

• Example: 4-bit RCA

14/07/2003 UAH-CPE/EE 422/522 AM 15

4-bit Adder

14/07/2003 UAH-CPE/EE 422/522 AM 16

4-bit Adder using Generate

•5

14/07/2003 UAH-CPE/EE 422/522 AM 17

Synthesis of VHDL Code

• Synthesizer
– take a VHDL code as an input
– synthesize the logic: output may be a logic schematic

with an associated wirelist

• Synthesizers accept a subset of VHDL as input
• Efficient implementation?

• Context

A <= B and C;

...

wait until clk’event and clk = ‘1’;

A <= B and C;

Implies CM for A Implies a register or flip-flop

14/07/2003 UAH-CPE/EE 422/522 AM 18

Synthesis of VHDL Code (cont’d)

• When use integers specify the range
– if not specified, the synthesizer may infer 32-bit register

• When integer range is specified,
most synthesizers will implement
integer addition and subtraction
using binary adders with appropriate number of bits

• General rule: when a signal is assigned a value,
it will hold that value until it is assigned new value

14/07/2003 UAH-CPE/EE 422/522 AM 19

Unintentional Latch Creation

What if a = 3?
The previous value of b should be held in the latch, so G should
be 0 when a = 3.

To eliminate latch => replace the word null with b <= 0;
14/07/2003 UAH-CPE/EE 422/522 AM 20

If Statements

if A = ‘1’ then NextState <= 3;

end if;

What if A /= 1?

Retain the previous value for NextState?

Synthesizer might interpret this to mean that NextState is unknown!

if A = ‘1’ then NextState <= 3;

else NextState <= 2;

end if;

•6

14/07/2003 UAH-CPE/EE 422/522 AM 21

Synthesis of a Case Statement

14/07/2003 UAH-CPE/EE 422/522 AM 22

Case Statement:
Before and After Optimization

14/07/2003 UAH-CPE/EE 422/522 AM 23

Synthesis of an If Statement

Synthesized code before optimization

14/07/2003 UAH-CPE/EE 422/522 AM 24

Standard VHDL Synthesis Package

• Every VHDL synthesis tool provides its own
package of functions for operations commonly
used in hardware models

• IEEE is developing a standard synthesis package,
which includes functions for arithmetic operations
on bit_vectors and std_logic vectors
– numeric_bit package defines operations on bit_vectors

• type unsigned is array (natural range<>) of bit;
• type signed is array (natural range<>) of bit;

– package include overloaded versions of arithmetic,
relational, logical, and shifting operations, and
conversion functions

– numeric_std package defines similar operations on
std_logic vectors

•7

14/07/2003 UAH-CPE/EE 422/522 AM 25

Numeric_bit, Numeric_std

• Overloaded operators
– Unary: abs, -
– Arithmetic: +, -, *, /, rem, mod
– Relational: >, <, >=, <=, =, /=
– Logical: not, and, or, nand, nor, xor, xnor
– Shifting: shift_left, shift_right, rotate_left, rotate_right,

sll, srl, rol, ror

14/07/2003 UAH-CPE/EE 422/522 AM 26

Numeric_bit, Numeric_std (cont’d)

14/07/2003 UAH-CPE/EE 422/522 AM 27

Numeric_bit, Numeric_std (cont’d)

14/07/2003 UAH-CPE/EE 422/522 AM 28

Synthesis Examples (1)

•8

14/07/2003 UAH-CPE/EE 422/522 AM 29

Synthesis Examples (2a)

• Mealy machine:
BCD to
BCD+3
Converter

14/07/2003 UAH-CPE/EE 422/522 AM 30

Synthesis Examples (2b)

• Mealy machine:
BCD to
BCD+3
Converter

14/07/2003 UAH-CPE/EE 422/522 AM 31

Synthesis Examples (2c)

3 FF, 13 gates

14/07/2003 UAH-CPE/EE 422/522 AM 32

Files

• File input/output in VHDL
• Used in test benches

– Source of test data
– Storage for test results

• VHDL provides a standard TEXTIO package
– read/write lines of text

•9

14/07/2003 UAH-CPE/EE 422/522 AM 33

Files

14/07/2003 UAH-CPE/EE 422/522 AM 34

Standard TEXTIO Package

• Contains declarations and procedures
for working with files composed of lines of text

• Defines a file type named text:
type text is file of string;

• Contains procedures for reading lines of text from a
file of type text and for writing lines of text to a file

14/07/2003 UAH-CPE/EE 422/522 AM 35

Reading TEXTIO file

• Readline reads a line of text and places
it in a buffer with an associated pointer

• Pointer to the buffer must be of type line,
which is declared in the textio package as:

type line is access string;
• When a variable of type line is declared,

it creates a pointer to a string
• Code

variable buff: line;
...
readline (test_data, buff);

– reads a line of text from test_data and places it in a
buffer which is pointed to by buff

14/07/2003 UAH-CPE/EE 422/522 AM 36

Extracting Data from the Line Buffer

• To extract data from the line buffer, call a read
procedure one or more times

• For example, if bv4 is a bit_vector of length four,
the call

read(buff, bv4)
– extracts a 4-bit vector from the buffer, sets bv4 equal to

this vector, and adjusts the pointer buff to point to the
next character in the buffer. Another call to read will then
extract the next data object from the line buffer.

•10

14/07/2003 UAH-CPE/EE 422/522 AM 37

Extracting Data from the Line Buffer (cont’d)

• TEXTIO provides overloaded read procedures to
read data of types bit, bit_vector, boolean,
character, integer, real, string, and time from buffer

• Read forms
read(pointer, value)
read(pointer, value, good)

– good is boolean that returns TRUE if the read is
successful and FALSE if it is not

– type and size of value determines which of the read
procedures is called

– character, strings, and bit_vectors within files of type text
are not delimited by quotes

14/07/2003 UAH-CPE/EE 422/522 AM 38

Writing to TEXTIO files

• Call one or more write procedures to write data
to a line buffer and then call writeline to write the line to a
file
variable buffw : line;
variable int1 : integer;
variable bv8 : bit_vector(7 downto 0);
...
write(buffw, int1, right, 6); --right just., 6 ch. wide
write(buffw, bv8, right, 10);
writeln(buffw, output_file);

• Write parameters: 1) buffer pointer of type line,
2) a value of any acceptable type,
3) justification (left or right), and 4) field width (number of characters)

14/07/2003 UAH-CPE/EE 422/522 AM 39

An Example

• Procedure to read data from a file and store the
data in a memory array

• Format of the data in the file
– address N comments
byte1 byte2 ... byteN comments

• address – 4 hex digits
• N – indicates the number of bytes of code
• bytei - 2 hex digits
• each byte is separated by one space
• the last byte must be followed by a space
• anything following the last state will not be read

and will be treated as a comment

14/07/2003 UAH-CPE/EE 422/522 AM 40

An Example (cont’d)

• Code sequence: an example
– 12AC 7 (7 hex bytes follow)

AE 03 B6 91 C7 00 0C (LDX imm, LDA dir, STA ext)
005B 2 (2 bytes follow)
01 FC_

• TEXTIO does not include read procedure
for hex numbers
– we will read each hex value as a string of characters

and then convert the string to an integer

• How to implement conversion?
• table lookup – constant named lookup is an array of integers

indexed by characters in the range ‘0’ to ‘F’

• this range includes the 23 ASCII characters:
‘0’, ‘1’, ... ‘9’, ‘:’, ‘;’, ‘<‘, ‘=‘, ‘>’, ‘?’, ‘@’, ‘A’, ... ‘F’

• corresponding values:
0, 1, ... 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15

•11

14/07/2003 UAH-CPE/EE 422/522 AM 41

VHDL Code to Fill Memory Array

14/07/2003 UAH-CPE/EE 422/522 AM 42

VHDL Code to Fill Memory Array (cont’d)

14/07/2003 UAH-CPE/EE 422/522 AM 43

Things to Remember

• Attributes associated to signals
– allow checking for setup, hold times,

and other timing specifications
• Attributes associated to arrays

– allow us to write procedures that do not depend on the
manner in which arrays are indexed

• Inertial and transport delays
– allow modeling of different delay types that occur in real

systems
• Operator overloading

– allow us to extend the definition of VHDL operators
so that they can be used with different types of operands

14/07/2003 UAH-CPE/EE 422/522 AM 44

Things to Remember (cont’d)

• Multivalued logic and the associated resolution
functions
– allow us to model tri -state buses, and systems where a

signal is driven by more than one source

• Generics
– allow us to specify parameter values for a component

when the component is instantiated

• Generate statements
– efficient way to describe systems with iterative structure

• TEXTIO
– convenient way for file input/output

•12

14/07/2003 UAH-CPE/EE 422/522 AM 45

Networks for Arithmetic Operations

Case Study: Serial Adder with Accumulator

14/07/2003 UAH-CPE/EE 422/522 AM 46

Networks for Arithmetic Operations

Serial Adder with Accumulator

14/07/2003 UAH-CPE/EE 422/522 AM 47

State Graphs for Control Networks

• Use variable names instead of 0s and 1s
– E.g., XiXj/ZpZq

• if Xi and Xj inputs are 1, the outputs Zp and Zq are 1
(all other outputs are 0s)

– E.g., X = X1X2X3X4, Z = Z1Z2Z3Z4
• X1X4’/Z2Z3 == 1 - - 0 / 0 1 1 0

14/07/2003 UAH-CPE/EE 422/522 AM 48

Constraints on Input Labels

• Assume: I – input expression =>
we traverse the arc when I=1

Assures that at most one input label can be 1 at any given time

Assures that at least one input label will be 1 at any given time

1 + 2: Exactly one label will be 1 =>
the next state will be uniquely defined for every input combination

•13

14/07/2003 UAH-CPE/EE 422/522 AM 49

Constraints on Input Labels (cont’d)

14/07/2003 UAH-CPE/EE 422/522 AM 50

Networks for Arithmetic Operations

Case Study: Serial Parallel Multiplier

Note: we use unsigned binary numbers

14/07/2003 UAH-CPE/EE 422/522 AM 51

Block Diagram of a Binary Multiplier

Ad – add signal // adder outputs are stored into the ACC
Sh – shift signal // shift all 9 bits to right
Ld – load signal // load multiplier into the 4 lower bits of the ACC
and clear the upper 5 bits

14/07/2003 UAH-CPE/EE 422/522 AM 52

Multiplication Example

•14

14/07/2003 UAH-CPE/EE 422/522 AM 53

State Graph for Binary Multiplier

14/07/2003 UAH-CPE/EE 422/522 AM 54

Behavioral VHDL Model

14/07/2003 UAH-CPE/EE 422/522 AM 55

Behavioral VHDL Model (cont’d)

